
8

V: oVerflow. An arithmetic overflow occurred on a signed operation (8-bit or 16-bit only).

For addition information on the status bits, see section 7.1 (Sign, carry, and overflow).

To avoid potential deadlock, X-Makina enforces the following with respect to the sleep-state bit
(SLP):

1. When entering or leaving an interrupt service routine, PSW.SLP is cleared.

2. When the CPU priority is 7, PSW.SLP cannot be set.

This register should not be used as a general purpose register.

4.5 Program counter (R7 or PC)

The program counter, PC, contains the address of the next instruction to be executed.
Instructions must fall on even-byte boundaries, therefore the hardware always clears the least-
significant bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0

Moving a value to the PC is equivalent to a JUMP instruction,3 control will pass to the specified
address. Note that there will be a one or two instruction delay if X-Makina is implemented as a
pipeline processor.

5 Instructions

X-Makina’s 33 instructions are described in this section.

5.1 Memory access

Memory access instructions allow a program to access data memory. Two registers are used,
one register specifying the effective-address (EA) of a memory location to be read-from (in this
case, the contents of the memory location are copied to the second register) or written-to (in
this case, the contents of the second register are copied to memory location).

There are four memory access instructions.

5.1.1 Register direct and register direct with pre or post auto-increment or auto-decrement

The format of the LD (load) and ST (store) instructions is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode PRPO DEC INC 0 W/B SRC DST

The register used for memory-access can be modified using:

PRPO: Pre- or post- increment or decrement of the memory register specifying the location to
access. A clear value (i.e., zero) can indicate either a post-increment or post-decrement or no
action, while a set value (i.e., one) indicates a pre-increment or pre-decrement action.

3 X-Makina does not have a JUMP instruction; however, it can be emulated; see section 6. Branching, or transfer of
control, is explained in section 5.3.b

9

DEC: Decrement the register (before or after the instruction is executed, see PRPO). A clear value
indicates no decrementing, while a set value indicates decrementing.

INC: Increment the register (before or after the instruction is executed, PRPO). A clear value
indicates no incrementing, while a set value indicates incrementing.

SRC: The source register (R0 through R7). The SRC register is where the data comes “from”.

The SRC register in the load instruction (LD) refers to the memory location from which a data
value is read and loaded-into the DST register (see below). The SRC register can be modified
(pre/post and decrement/increment) to move through memory a byte or a word at a time.

The SRC register in the store instruction (SD) contains the value of the data to be written to
memory (the address of which is specified by the DST register, see below).

DST: The destination register (R0 through R7). The DST register is where the data goes “to”.

The DST register in the load instruction (LD) is the register to which the data value from
memory is to be written (the address of which is specified by the SRC register, see above).

The DST register in the store instruction (ST) refers to the memory location to which a data
value is written-to from the SRC register. The DST register can be modified (pre/post and
decrement/increment) to move through memory a byte or a word at a time.

The possible address modifier combinations are listed in Table 2. A modified register used to
indicate an address in a byte load or store will increment or decrement by 1, while a register
referring to a word will increment or decrement by 2.

10

Table 2: Valid PRPO, DEC, and INC combinations and their meanings
(PRPO, DEC, and INC combinations 011, 100, and 111 are undefined)

Register
format

Definition
Effective address (EA)

and register value
PRPO DEC INC

Rn Unmodified register EA = Rn
memory[EA]

0 0 0

+Rn Pre-increment register EA = Rn + 1 (byte) or
EA = Rn + 2 (word)
memory[EA]
Rn = EA

1 0 1

Rn+ Post-increment register EA = Rn
memory[EA]
Rn = Rn + 1 (byte) or
Rn = Rn + 2 (word)

0 0 1

-Rn Pre-decrement the register EA = Rn - 1 (byte) or
EA = Rn - 2 (word)
memory[EA]
Rn = EA

1 1 0

Rn- Post-decrement the register EA = Rn
memory[EA]
Rn = Rn - 1 (byte) or
Rn = Rn - 2 (word)

0 1 0

The uses of the source (SRC) and destination (DST) registers depend on the instruction (LD or ST)
and are explained in Table 3.

Table 3: Load and store register-direct and
register-direct with pre- or post-auto-increment or auto-decrement

Instruction Operation Description Opcode

LD(.B or .W) SRC,DST
LD(.B or .W) +SRC,DST
LD(.B or .W) -SRC,DST
LD(.B or .W) SRC+,DST
LD(.B or .W) SRC-,DST

if Pre-Incr or Pre-Decr then
 SRC = SRC + address modifiers
EA = SRC

DST  memory[EA]
if Post-Incr or Post-Decr then
 SRC = SRC + address modifiers

Load a register (DST) from memory
location specified by the effective
address (EA), the value in the SRC
register, modified or unmodified.
Reading a byte stores the value in the
low-byte of the DST register; the high-
byte is unchanged.

1.0000

ST(.B or .W) SRC,DST
ST(.B or .W) SRC,+DST
ST(.B or .W) SRC,-DST
ST(.B or .W) SRC,DST+
ST(.B or .W) SRC,DST-

if Pre-Incr or Pre-Decr then
 DST = DST + address modifiers
EA = DST

memory [EA]  SRC
if Post-Incr or Post-Decr then
 DST = DST + address modifiers

Store a register (SRC) in memory location
specified by the effective address.
Writing a byte to the low-byte of a word
does not change the word’s high-byte.

1.0001

The LD and ST instructions permit array accessing (e.g., 8-bit and 16-bit arrays);4 for example, to
copy 10 words from Array1 to Array2:

4 Note: An 8-bit array of characters is a string.

11

 MOVL Array1,R2 ; Ptr1 = &Array1

 MOVH Array1,R2

 MOVL Array2,R3 ; Ptr2 = &Array2

 MOVH Array2,R3

 MOVLZ #10,R0 ; Counter = 10

Loop LD R2+,R1 ; Data = *Ptr1++

 ST R1,R3+ ; *Ptr2++ = Data

 SUB #1,R0 ; Counter = Counter - 1

 BNZ Loop ; If Counter  0 Then repeat from Loop

R2 and R3 are incremented by 2 since LD and ST are operating on words.

The number of bytes in a NUL-terminated string can be counted using LD and CMP:

 MOVL String,R1 ; char *ptr = Stringb

 MOVH String,R1

 MOVLZ #0,R0 ; count = 0

Loop LD.B R1+,R2 ; data = *ptr++

 CMP.B #0,R2 ; if data = NUL, leave loop

 BEQ Done

 ADD #1,R0 ; count++

 BAL Loop

Done ; R0 (count) has length of string

In the above example, R1 is incremented by 1 because LD.B operates on bytes

These instructions can also be used to create stacks and stack operators. For example, LD and ST
can be used to implement stack instructions PUSH and PULL (POP).

SP EQU R5 ; SP equated stack pointer

; Stack is pointed to by SP

 MOVL STKTOP,SP

 MOVH STKTOP,SP

; Push R2 onto stack, allowing R2 to be used

 ST R2,-SP ; Push R2 (save R2)

 MOVLZ #0,R2 ; Clear R2

; Other instructions involving R2

 LD SP+,R2 ; Pull R2 (restore R2)

5.1.2 Register relative

X-Makina also supports two load and store instructions, LDR and STR, which use register-relative
addressing where the effective address is determined from the register value plus the value of a
6-bit signed offset stored in the instruction:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode 6-bit offset W/B SRC DST

The 6-bit signed offset (bits 6 through 11) values are extracted and stored in bits 0 through 5 of
an internal 16-bit register with the value of bit 5 being duplicated in bits 6 through 15 (i.e., the
sign-bit is extended, this is referred to as sign-extension).5 The signed, shifted value in the
internal register is added to the SRC or DST register (SRC for load or DST for store) to become the

5 The internal register is not accessible by software. It is internal to the CPU.

